## MODELS FOR THE STUDY OF MECHANICAL RESPONSE OF THE SOLIDS AND SYSTEMS OF SOLIDS

### **HABILITATION THESIS**

**Domain: MECHANICAL ENGINEERING** 

Author: Dr.Eng. SCUTARU Maria Luminita

**BRASOV 2015** 



#### **EVOLUTION OF PROFFESIONAL AND ACADEMIC CAREER**

#### **Teaching activity**

**1998-2000** – *junior assistant* – Transilvania University of Brasov, Faculty of Mechanical Engineering, Department of Mechanical Engineering

**2000-2005** – assistant professor - Transilvania University of Brasov, Faculty of Mechanical Engineering, Department of Mechanical Engineering

**2005-2014** – *lecture*- Transilvania University of Brasov, Faculty of Mechanical Engineering, Department of Mechanical Engineering

**2014 – present** - associate professor - Transilvania University of Brasov, Faculty of Mechanical Engineering, Department of Mechanical Engineering

### **Education and training:**

**1992-1997-** Licence in Industrial Engineering, Transilvania University of Brasov, Faculty of Wood Industry

- 1999 2006 Transilvania University of Brasov Ph.D. degree in Industrial Engineering, with "Wood and wooden materials thermo insulation panels used in building construction", Doctor father – Prof.Ph.D. Eng. Ivan Cismaru
- 2006-2008 Transilvania University of Brasov, Faculty of Mechanical Engineering - Masters degree in Computational Mechanics

 2010-2013- Postdoc studies in the field of innovative products and processes, research on the topic *Determination of non-stationary dynamic response of structures of polymeric composite materials with application in the automotive and engineering – DINACOM*, Transilvania University of Brasov, Faculty of Mechanical Engineering, Other responsabilites related to the scientific activity include:

Post-graduate courses:

23 - 27 oct. 2006 - Dynamical Analysis of Vehicle System- Theoretical Foundations and Advanced Apllications, Udine, Italia

9-12. dec. 2006 - Strain Gage Installation Workshop, Darmstadt, Germania

19-23 nov. 2007 - Optical Measuring Techniques GOM, Braunschwieg, Germania

8-12 sept. 2008 - Computational and Experimental Mechanics of Advanced Materials, Udine

Member of Organizing Commities of

- COMEC 2005, 2007,2011, 2013, 2015 – International Conference on Computational Mechanics and Virtual Engineering, Brasov;

- COMAT 2006, 2008, 2010, 2012, 2014 - International Conference and Advanced Composite Materials Engineering, Brasov;

 since 2013 – IM-IFR program coordinator, Department of Mechanical Engineering, Faculty of Mechanical Engineering. Concerning the publishing activity:

- 23 papers published in ISI Proceedings volumes;
- 16 papers published in ISI journals;
- 15 papers cited in ISI journals;
- 98 papers published in Conference Proceedings;
- 3 specialized monographs;
- 12 national publishing books (4-unique author, 4- first author)
- 1 published chapter in international books;
- 3 patent proporsal
- experience as manager or member of 12 research projects (manager – 1 project research; member – 11 research grants)

Journals where are published my papers ISI indexed journals



Journal of Optoelectronic and **Advanced Materials** 



#### **Optoelectronic and Advanced Materials**



**Journal of Applied Mechanics** 

### Habilitation preliminary conditions

**1.** Scientific research activity, recognition and visibility - (*min.10 points including 6 points from CDI-ART*)

- realized 43,162 points including 28,642 from CDI-ART

2. Teaching activity - (min. 10 points including 6 points from DID-MSC)
- realized 22,92 points from DID-MSC

**3.** Research grants and contracts –(*min.10 points including 6 points as grant/project Manager*)

- realized 32,105 points including 8,913 points as project Manager

TOTAL 101,187 points

3,27 x minimum necessary points

## CONTENTS

#### Part I

1. Dynamical Analysis of the Mechanical System with Two Degree of Freedeom Applied to the Transmission of the Wind Turbine

2. Analysis of the Motion Equations and Dynamic Response of a Multibody System with Elastic Element

#### Part II

**3. Mechanical Propertie's Identification and Tests on Advanced Composite Materials** 

4. Toward the use of irradiation for the composite materials properties Improvement

## Chapter 1

DYNAMICAL ANALYSIS OF THE MECHANICAL SYSTEM WITH TWO DEGREE OF FREEDOM APPLIED TO THE TRANSMISSION OF THE WIND TURBINE

1.1. State of the art in the field of the wind turbines 1.2. Water pumping, a particular application of wind energy use

- 1.3. The objectives of the chapter
- 1.4. Analysis of wind generator pumping

1.5. Dynamic analysis of pumps used in small wind power systems

- **1.6. Experimental confirmation of the theoretical results**
- 1.7. Conclusions
- 1.8. Original contributions of the author in the field



## **Classical solution - Samples**





### Sketch of an eolian waterpump used in a farm





#### **KINEMATICS AND DYNAMICS**

Accelerations:

$$\begin{cases} \ddot{x}_{c1} \\ \ddot{y}_{c1} \\ \varepsilon_{1} \\ \varepsilon_{1} \\ \varepsilon_{2} \\ \ddot{y}_{c2} \\ \varepsilon_{2} \\ \ddot{x}_{c} \end{cases} = \begin{cases} -a\sin\alpha \\ a\cos\alpha \\ 1 \\ -r\sin\alpha + bt\sin\beta \\ r\cos\alpha + bt\cos\beta \\ t \\ -r\sin\alpha + bt\cos\beta \\ t \\ -r\sin\alpha + bt^{2}\sin\beta + bu\cos\beta \\ u \\ -r\sin\alpha + bt^{2}\sin\beta + bu\cos\beta \end{cases} \varepsilon_{1} + \begin{cases} -a\cos\alpha \\ -a\sin\alpha \\ 0 \\ 0 \\ -r\cos\alpha - bt^{2}\sin\beta + bu\sin\beta \\ u \\ -r\sin\alpha + bt^{2}\sin\beta + bu\cos\beta \\ u \\ -r\sin\alpha + bt^{2}\sin\beta + bu\cos\beta \end{cases} \varepsilon_{1} + \begin{cases} -a\cos\alpha \\ -a\sin\alpha \\ 0 \\ 0 \\ -r\sin\alpha + bt^{2}\sin\beta + bu\sin\beta \\ -r\sin\alpha + bt\cos\beta \\ 0 \\ -r\sin\alpha + bt^{2}\sin\beta + bu\cos\beta \end{cases} \varepsilon_{1}$$

#### Motion equations:

$$\begin{bmatrix} m_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & m_{1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & J_{C1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & m_{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & m_{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & J_{C2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & J_{C2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & m_{3} \end{bmatrix} \begin{bmatrix} \ddot{x}_{C1} \\ \ddot{y}_{C1} \\ \varepsilon_{1} \\ \ddot{x}_{C2} \\ \ddot{y}_{C2} \\ \varepsilon_{2} \\ \ddot{x}_{C} \end{bmatrix} = \begin{cases} X_{A} + X_{B} \\ Y_{A} + Y_{B} \\ [M_{m} + X_{A}a \sin\alpha - Y_{A}a \cos\alpha - N_{A}a \sin\alpha - Y_{A}a \sin\alpha - Y$$

Final form of motion equations:

$$[m_1a^2 + J_{C1} + m_2r^2 + m_2b^2t^2 + 2m_2rbt\cos(\alpha + \beta) + J_{C2}t^2 +$$

+ $m_3(-r\sin\alpha + lt\sin\beta)^2$ ] $\varepsilon_1$ +[ $m_2(rbt^2\cos(\alpha - \beta) + rbu\cos(\alpha + \beta) -$ 

$$-rbt\sin(\alpha+\beta)-b^2t^3\cos(2\beta+b^2tu)+J_{C2}tu+$$

 $+m_3(-r\sin\alpha + lt\sin\beta)(-r\sin\alpha + lt^2\sin\beta + lu\cos\beta)]\omega_1^2 =$ 

 $= M_m + F_r(-r\sin\alpha + lt\sin\beta)$ 

 $J(\alpha)\ddot{\alpha} + J'(\alpha)\dot{\alpha}^2 = M(\alpha)$ 





#### PROPOSED MECHANISM WITH TWO DEGREE OF FREEDOM – "MECHANISM CLOSED BY INERTIA"



Mechanism with two degree of freedom

Geometry of the mechanism

 $C_3$ 

ХD

 $C_2$ 



## Equation of motions

$$\begin{bmatrix} \{A_1\}^T [m] \{A_1\} & \{A_1\}^T [m] \{A_2\} \\ \{A_2\}^T [m] \{A_1\} & \{A_2\}^T [m] \{A_2\} \end{bmatrix} \begin{bmatrix} l_1 \varepsilon_1 \\ \ddot{x}_D \end{bmatrix} +$$

$$+\begin{bmatrix} \{A_1\}^T [m] \{B_1\} & \{A_1\}^T [m] \{B_2\} & \{A_1\}^T [m] \{B_3\} \\ \{A_2\}^T [m] \{B_1\} & \{A_2\}^T [m] \{B_2\} & \{A_2\}^T [m] \{B_3\} \end{bmatrix} \begin{bmatrix} (l_1 \omega_1)^2 \\ (l_1 \omega_1 \dot{x}_D) \\ (\dot{x}_D)^2 \end{bmatrix} = \begin{bmatrix} \{A_1\}^T \{Q\} \\ \{A_2\}^T \{Q\} \end{bmatrix}$$



### **Results after integration for t=20 sec**









### **Results after integration for t=30 sec**









Sketch of the motion of the two degree of freedom system for the angular speed 160 rot./min



# Sketch of the motion of the two degree of freedom system for the angular speed 190 rot./min





#### Experimental setup for testing



#### Highlighting the markers



The path of marker 1







#### Trajectory of marker 1

#### Table 1.2.

|        | TAP POSITION     |                   |                  |                   |                  |                   |
|--------|------------------|-------------------|------------------|-------------------|------------------|-------------------|
| Regime | 0_0_0            |                   | 1_0_0_1          |                   | 1_1_1_1          |                   |
|        | Angular<br>speed | Displa-<br>cement | Angular<br>speed | Displa-<br>cement | Angular<br>speed | Displa-<br>cement |
|        | (rot/min)        | (mm)              | (rot/min)        | (mm)              | (rot/min)        | (mm)              |
| 100    | 165.36           | 6.84              | 165.24           | 6.16              | 161.73           | 6.05              |
| 120    | 183.15           | 9.58              | 176.93           | 8.74              | 163.71           | 8.04              |
| 140    | 191.21           | 14.67             | 185.26           | 12.76             | 184.18           | 11.62             |
| 160    | 197.11           | 15.86             | 192.56           | 15.30             | 191.67           | 15.04             |



The displacement of the piston 0\_0\_0\_0



#### The displacement of the piston 1\_0\_0\_1



The displacement of the piston 1\_1\_1\_1

## CONCLUSIONS

This mechanism property provides the following benefits:

- Allow startup of the vertical axis wind turbine at low wind speeds (thus avoiding the disadvantage of this type of wind turbines);
- Accomplishes an increase of pump turbine efficiency with the increase of wind speed. This is obvious if you notice that as speed increases, both the number of racing pistons in unit time and the length of its stroke increase;
- Limits the speed in case of strong wind turbine, by substantially increasing the power consumed by the pump;

## **Chapter 2** ANALYSIS OF THE MOTION EQUATIONS AND DYNAMIC RESPONSE OF THE MULTIBODY SYSTEM WITH ELASTIC ELEMENTS

2.1. Modeling the multibody systems with elastic elements

2.2. Eigenvalues and eigenmodes of a cardan joint

2.3. Finite Element Analysis of a Two-Dimensional Linear Elastic Systems with a Plane "Rigid Motion"

2.4. Some properties of motion equations




# The first six eigenmodes corresponding to the non null eigenvalues









## The eigenmodes for a disk - deformation situated perpendicular to a plane



### CONCLUSIONS

In this section are presented some mathematical properties of motion equations in the case of multibody systems having elastic elements.

These properties are due to the existence of the skew symmetrical matrix C, by which the relative motion of nodal coordinates is manifested by the Coriolis effects and the additional term introduced in equations (applying the finite element method);

Using these properties is possible to allow a qualitative analysis of the obtained motion equations.

## **Chapter 3** MECHANICAL PROPERTIE'S IDENTIFICATION AND TESTS ON ADVANCED COMPOSITE MATERIALS

Mechanical Properties of a Sandwich Composite with twill weave carbon and EPS



Flexural load-unload test detail. Sandwich panel clamped on contour



Tensile test detail on an epoxy impregnate 2/2 twill weave carbon fabric

| Characteristics                   | Value    |
|-----------------------------------|----------|
| Length between extensometer's     | 50       |
| lamellae (mm)                     |          |
| Preload stress (kN)               | 0.0056   |
| Preload speed (mm/min)            | 21       |
| Test speed (mm/min)               | 1        |
| Fabric width (mm)                 | 18.5     |
| Fabric thickness (mm)             | 0.4      |
| Stiffness determined as ratio     | 578      |
| between load and extension (N/m)  | 5656.99  |
| Young's modulus (MPa)             | 31273.82 |
| Load at maximum load (kN)         | 1.92     |
| Stress at maximum load (MPa)      | 207.61   |
| Strain at maximum load (-)        | 0.009    |
| Strain at maximum extension (-)   | 0.344    |
| Strain at minimum load (-)        | 0.07     |
| Load at minimum extension (kN)    | 0.005    |
| Stress at minimum extension (MPa) | 0.582    |
| Load at break (kN)                | 1.919    |
| Stress at break (MPa)             | 207.55   |
| Strain at break (-)               | 0.009    |
| Tensile strength (MPa)            | 207.61   |







The following conclusions can be drawn:

- The sandwich structure's strains with skins based on twill weave carbon fabric reinforced epoxy resin are comparable with those of the structure with skins based on EWR-300 glass fabric/epoxy resin;
- Stresses in fibres direction in case of the sandwich structure with carbon fabric/epoxy resin reinforced skins, are up to six times higher than those existent in EWR-300 glass fabric/epoxy resin skins;
- Stresses transverse to the fibres direction in case of the sandwich structure with carbon fabric/epoxy resin reinforced skins are 20% lower than those existent in EWR-300 glass fabric/epoxy resin skins;

On the polylite composite laminate material behavior to tensile stress on weft direction



RT300 glass fabric reinforcing material



RT300 glass fabric-reinforced Polylite 440-M888 polyester resin specimens cut on weft direction Specimens' maximum mechanical properties with 1 mm/min test speed

| Feature                              | Value  |
|--------------------------------------|--------|
| Load at maximum load (kN)            | 11.57  |
| Load at break (kN)                   | 11.567 |
| Young's modulus (MPa)                | 7446.2 |
| Tensile strength (MPa)               | 312.74 |
| Stress at break (MPa)                | 312.61 |
| Strain at break (-)                  | 0.077  |
| Stress at minimum extension<br>(MPa) | 0.109  |
| Strain at maximum load (-)           | 0.077  |

Specimens' maximum mechanical properties with 2 mm/min test speed

| Feature                              | Value  |
|--------------------------------------|--------|
| Load at maximum load (kN)            | 10.778 |
| Load at break (kN)                   | 10.386 |
| Tensile strength (MPa)               | 320.76 |
| Stress at break (MPa)                | 309.11 |
| Strain at break (-)                  | 0.078  |
| Stress at minimum extension<br>(MPa) | 0.104  |
| Strain at maximum load (-)           | 0.077  |
| Strain at maximum extension (-)      | 0.078  |



Young's modulus distribution of eight RT300 glass fabric-reinforced Polylite 440-M888 polyester resin specimens (1 mm/min test speed)



Young's modulus distribution versus tensile strength of eight RT300 glass fabric- reinforced Polylite 440-M888 polyester resin specimen (1 mm/min test speed) The following conclusions can be drawn:

- The Young's modulus distribution of twelve layers RT300 glass fabric-reinforced Polylite 440-M888 polyester resin specimens cut on weft direction presents a maximum value of 7446.16 MPa at specimen 8 and a minimum value of 6424.94 MPa at specimen 4 ;
- The first failures take place at a strain value of 0.025 0.035 for both test speeds. These failures appear due to delamination. The delamination is not so spectacular than in case of chopped strand mats reinforced polyester resin laminates.;
- Due to good drape ability of RT300 glass fabrics, these reinforcing materials are widely used in most common polyester based composite structures.;

Hybrid carbon-hemp composite laminate used in automotive engineering impact applications



Carbon-hemp composite laminate



The impact device



$$H = \frac{v^2}{g} [m]$$

$$a(t) = g - \frac{F(t)}{m} (m / s^2)$$

$$U(t) = \int_{0}^{t} F(t) \cdot v(t) \cdot t$$

The specimen's geometry and fixing mode





The following conclusions can be drawn:

 Integrating the area under the loading curve (force-displacement) until the maximum value of the force (according to the first failure) the energy required to initiate the failure can be obtained;

 At the impact's moment, the energy accumulates in time and is direct proportional with the force and increases until reach a constant landing;

 In general, at the composite laminates the energy is frequently absorbed by creating some delamination surfaces called delamination breaks that lead to the strength and stiffness decrease

## **Chapter 4** TOWARD THE USE OF IRRADIATION FOR THE COMPOSITE MATERIALS PROPERTIES IMPROVEMENT



Glass fiber composites materials



Carbon fiber composites materials







Hemp specimen during the tensile test



Hemp fabric based specimens irradiated with 2 kGy dosis



Hemp fabric based specimens irradiated with 56,7 kGy dosis



#### The VHX digital microscope



Cross-section through a hemp fabric based specimen irradiated with 2 kGy dosis (100X magnitude)



Cross-section through a hemp fabric based specimen irradiated with 56.7 kGy dosis (100X magnitude)

#### **Some results**











Glass-Hemp specimen during the test





Hybrid glass-hemp specimens, before test



Hybrid glass-hemp specimens, after test

#### Some results











Carbon-hemp specimen during three-point bending test









#### Some results



Young's modulus of bending distributions of non-irradiated and irradiated carbonhemp composite specimens



Flexural rigidity distributions of nonirradiated and irradiated carbon-hemp composite specimens



Load-deflection distributions of specimen no. 4 with registration of first failure

## FINAL CONCLUSIONS

- Two different direction of research: composite materials and dynamic response of the multibody systems;
- Results: papers published in ISI indexed journal (16), monographs in the field (3);
- Grant and research project in these two research fields 16 research project;
- Very good collaboration in a team.

## The evolution and development plans for career development

### **Teaching activity**

- Updating and upgrading of teaching syllabuses to ensure consistency of content and task specialization;
- Implementation and development of modern technologies for teaching and learning in order to ensure adequate professional training practical realities; promoting methods of analysis, research methodologies, models of organizing activities with the participation of creative teaching; application of teaching methods based on information technology;
- Upgrading and equipping of laboratories for practical activities extend to subjects taught;

## **Research activity**

- Participation at national and international conferences to sustain the research results of PhD students in the field of mechanics;
- Publication of scientific papers in journals with impact factor in vederea national and international recognized;
- Development of partnership agreements to facilitate PhD students to participate at these research infrastructures.
## Thank you for your attention !!!!