

Ioana Agache Transylvania University Brasov

Adult and pediatric asthma and related co-morbidities - from research to clinical practice and purposeful education

Part 1. Scientific and professional achievements

Part 2. Evolution and development plans for career development

1. Scientific and professional achievements

1a. Main research area - adult and pediatric asthma

Asthma as a major health problem (1)

- •300 million people around the globe
- ■10% in the EU
- increasing prevalence in developing countries
- projected increase to 400 millions in the upcoming three decades
- Majority children and adults < 45 years old affecting up to 25% of the pediatric population in some European countries
- •the most frequent chronic disease of childhood
- •the leading cause for hospitalization and ED consultations for the pediatric population

Asthma as a major health problem (2)

- Significant direct and indirect costs = 72.2 billion Euro/year
- Uncontrolled asthma with frequent exacerbations, hospitalisations together with medications costs are the leading determinants of direct costs

•75% of the economic burden is due to indirect costs resulting from absenteeism and decreased productivity at the workplace

Masoli M, et al. Allergy 2004;59:469-78; Bahadori K et al. BMC Pulm Med 2009;9:24; Sullivan PW, et al. J Asthma 2016;10; Tavakoli H et al. Allergy. 2017;72(2):291-299; Beran D et al. Lancet Respir Med 2015;3:159-70

An efficient approach to tackle the "asthma epidemics"

- 1. Research and development programmes focused on:
- a. prevention
- b. disease mechanisms and biomarkers
- c. personalised approaches
- d. new treatments curing the disease.

An efficient approach to tackle the "asthma epidemics"

- 2. Integrative management of asthma patients
- a. Next generation guidelines
- b. Registries for asthma
- c. Improved access to early diagnosis and quality treatment
- d. Environment and co-morbidities control
- e. Patient and general public education
- f. Cost-efficient use of resources
- g. Patient-centered care models

An efficient approach to tackle the "asthma epidemics"

3. Strategic partnership between all stakeholders A community approach to a community problem

4. Recognition of asthma as a major health problem Increasing awareness

Description and validation of pediatric and asthma phenotypes, endotypes and biomarkers

Tackling environment
(infections, pollution),
(infections, pollution),
(infections, pollution),
(diet, exercise) and
(diet, exercise) and
(allergic
co-morbidities (allergic
rhinitis, obesity,
food allergy)

Endotype driven asthma
treatment and
new potential curative
approaches

Asthma prevention and control

Development and implementation of new models for cost-efficient disease management.

My research in asthma

Asthma is extremely heterogeneous

Asthma phenotypes and endotypes

Disease phenotypes

 describe clinical, physiolologic and morphologic characteristics as well as unique responses to treatment

Visible properties

Age, gender, race

Onset

Triggers

Comorbidities

Long-term outcome

Asthma visible properties

Inflammation type

Vital risk

Response to treatment

Lung physiology

Remodeling

ANA as a visible property

Table 1: Independent risk factors for severe evolution of asthma (multiple regression analysis)							
End-point	Risk factor	p value					
Death	ANA	p=0.037					
	NSAID intolerance	p<0.001					
	low FEV1 at inclusion	p=0.021					
Severe exacerbations	ANA	p=0.011					
	sputum eosinophils	p<0.001					
	smoke	p=0.044					
	NSAID intolerance	p=0.022					
High inhaled corticosteroid	ANA	p=0.036					
intake	sputum eosinophils	p=0.026					
	FEV1 at inclusion < 30%	p=0.006					
FEV1 decline > 100 ml/year	ANA	p=0.006					
	sputum eosinophils	p=0.037					
	BMI>25	p=0.046					
	NSAID intolerance	p=0.017					

Predictive value of lung function trend and FeNO for difficult asthma in children

Table 3. Logistic Regression Analysis	sis for Independ	ent Risk Factors fo	or Difficult Asthma
---------------------------------------	------------------	---------------------	---------------------

			C	CIs			
	Wald Statisic	Odds Ratio	Lower	Upper	P Level		
Male	0.4469	0.2564	0.0047	13.8647	.5038		
Atopy	0.0069	1.1638	0.0327	41.4673	.9337		
Obesity	3.9913	0.0233	0.0006	0.9312	.0457*		
Exposure to tobacco smoke	0.1214	0.5266	0.0143	19.4270	.7275		
Low socio-economic status	0.1504	0.4998	0.0150	16.6372	.6982		
Severe rhinitis	4.3544	0.0209	0.0006	0.7907	.0369 ^a		
Psycho-pathology	0.1787	0.5526	0.0353	8.6479	.6725		
Low adherence to treatment	0.8200	0.2239	0.0088	5.7110	.3652		
Persistent bronchodilator response	0.2230	1.8668	0.1399	24.9027	.6368		
Unfavorable lung function trend	3.2596	0.0247	0.0004	1.3729	.0710		
Persistently high FeNO	4.1397	0.0297	0.0010	0.8790	.0419 ²		

Longitudinal evaluation and risk prediction

Persistent high FeNO as prognostic factor

	Children			Adults			
	With persistent high	Without persistent high	p value	With persistent high	Without persistent high	p value	
	FeNO n = 9	FeNO n = 82		FeNO n = 31	FeNO n = 134		
ACT mean	9.4	10.47	0.57	9.6	24	0.0001*	
Persistent airway obstruction	4(44.4%)	10(12.2%)	0.01*	6(19.4%)	10(7.5%)	0.04*	
Fast FEV1 decline	3(33.33%)	1(1.22%)	0.0001*	10(32.3%)	13(9.7%)	0.001*	

Phenotype	Endotype	l inking agther
Allergic asthma	Eosinophilic	Linking asthma
	Th2 driven inflammation	
	Steroid-responsive	phenotypes with endotypes
	Anti IgE responsive	
	Anti IL-5 responsive	with endotypes
	Anti IL-4/IL-13 responsive	with chactypes
Intrinsic asthma	Eosinophilic	
	Neutrophilic	
	Associated with autoantibodies/ superantigens	
	Steroid-responsive	
	Steroid-resistant	
Neutrophilic asthma	Activation of innate immune response	
	HDAC2 abnormal recruitment	
	Increased neutrophil survival	
	Steroid-resistant	
	Responsive to antioxidants/antibiotics	
	Anti TNF-a responsive	
	Responsive to HDAC regulators (theophylline)	
Aspirin intolerant	Eosinophilic	
asthma	Alteration in the eicosanoid metabolism/ sensitivity to leukotrienes C4, D4, and E4	
	Steroid-responsive	
	LTRA-responsive	Amarka Latal atal Allama
Extensive remodeling	Lack of inflammation/extensive remodeling	Agache I. et al. et al. Allergy.
asthma	Abnormal EMTU activation	2012;67(7):835-46
	Abnormalities of ASM	
	Defective repair mechanisms	
	Steroid-resistant	400
	ASM-targeted treatment responsive	
	MMP-targeted treatment responsive	
	Antiangiogenic responsive	

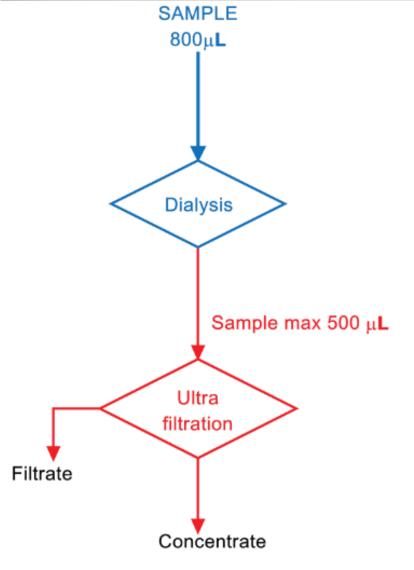
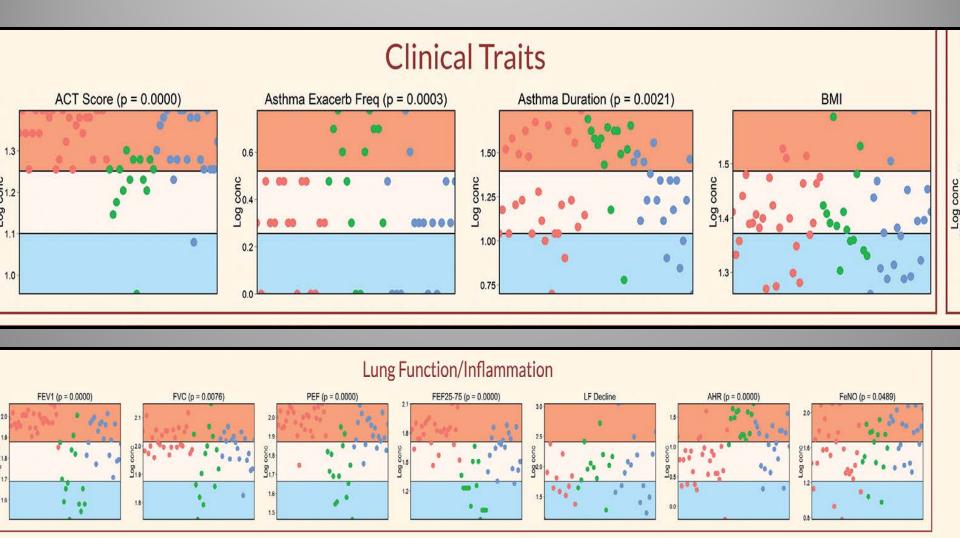


Figure 2

The dialysis-ultrafiltration method patented together with the SIAF asthma research team for measurement of sputum cytokines. (reproduced from Agache C et al. European Respiratory International Congress, Barcelona, 2013)

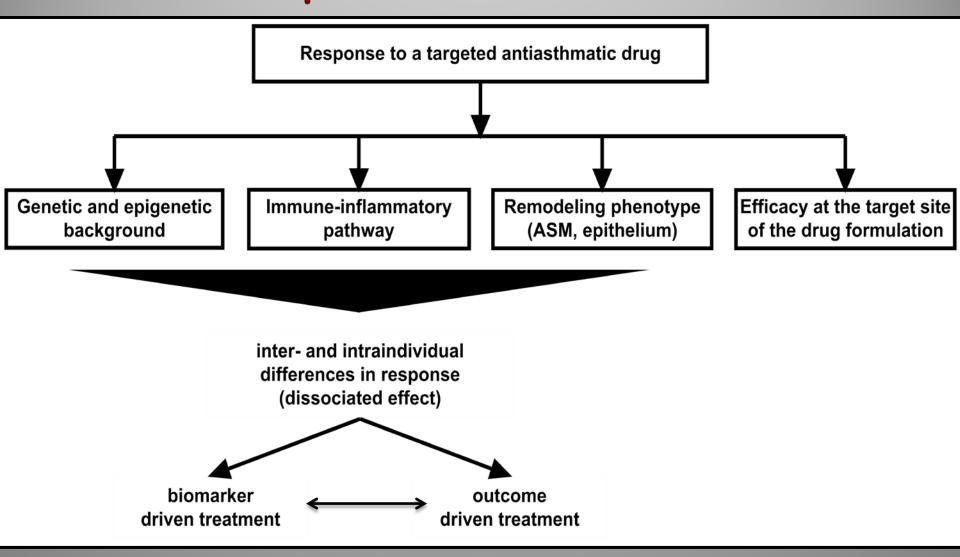
The use of inflammometry - induced sputum



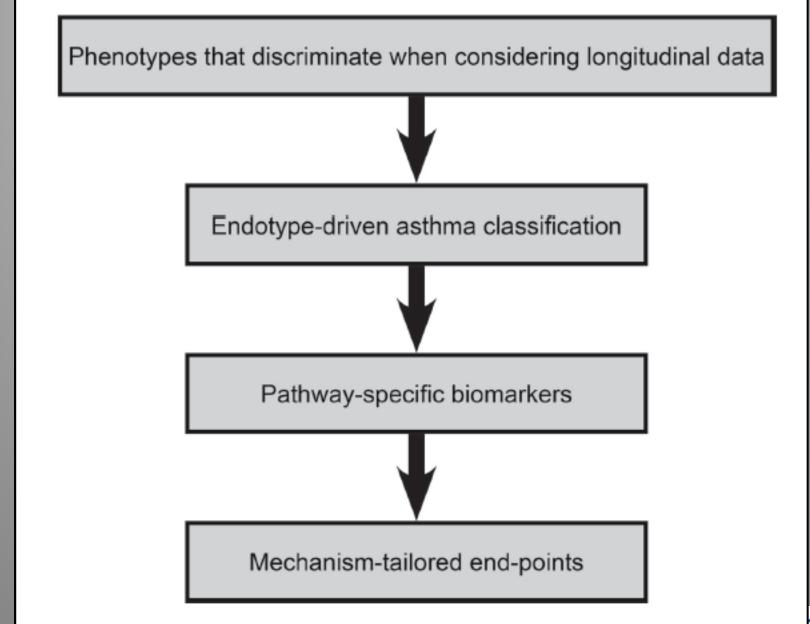
			Sputum Cluster 3	р					
N	27	14	19						
Age	39.04 ± 12.71	57.50 ± 12.37	40.68 ± 11.76	0.0000					
	19 ÷ 63	29 ÷ 77	20 ÷ 71						
Gender (% female)	37	64.3	63.2	0.1257					

	Sputum Cluster 1	Sputum Cluster 2	Sputum Cluster 3	р
Asthma classification (GINA)				0.0000
mild persistent, %	63.0	0.0	31.6	
moderate persistent, %	29.6	21.4	42.1	
severe persistent, %	7.4	78.6	26.3	
Atopic asthma, %	70.4	50.0	73.7	0.3222
Smokers, %	14.8	28.6	10.5	0.3785
Chronic_rhinosinusitis, %	25.9	28.6	26.3	0.9836
Aspirin_Sensitivity, %	40.7	57.1	31.6	0.3475
CS_resistant, %	3.7	57.1	0	0.0000
Exercise_induced_asthma, %	33.3	28.6	31.6	0.9551
Near_fatal_asthma, %	3.7	64.3	5.3	0.0000

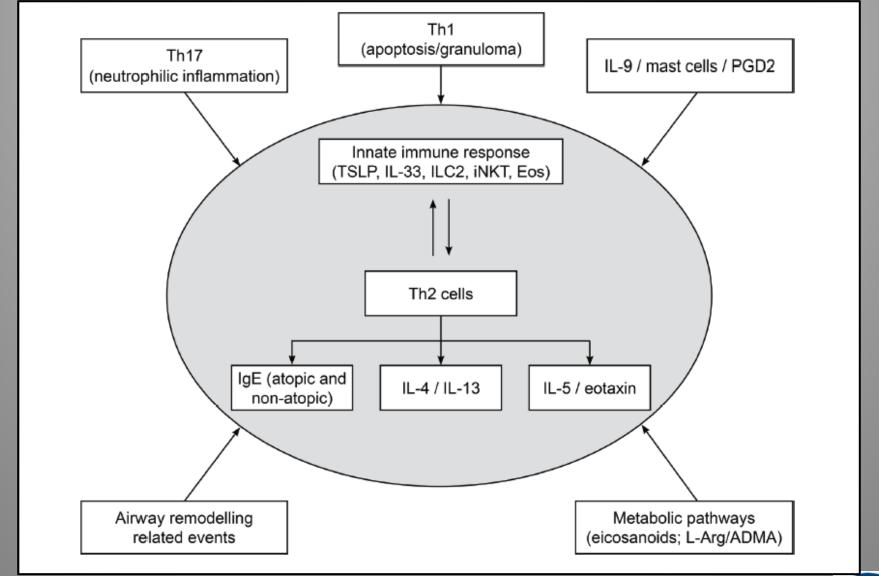
Asthma visible properties

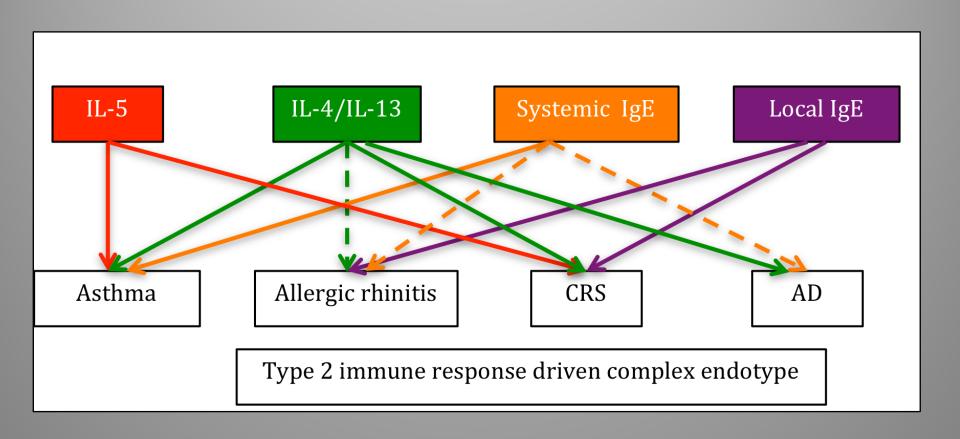


New pathogenetic mechanisms in asthma

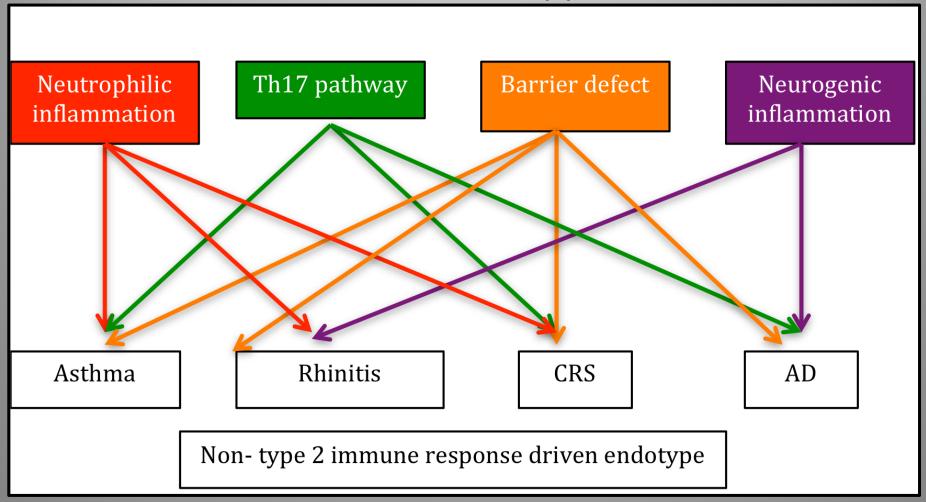

- Increased eotaxin and RANTES in smokers with asthma
- IL-6 and lung function decline
- IL-2 and brittle asthma
- VEGF and near-fatal asthma
- IP-10 and frequent exacerbators
- IL-10 and response to steroids

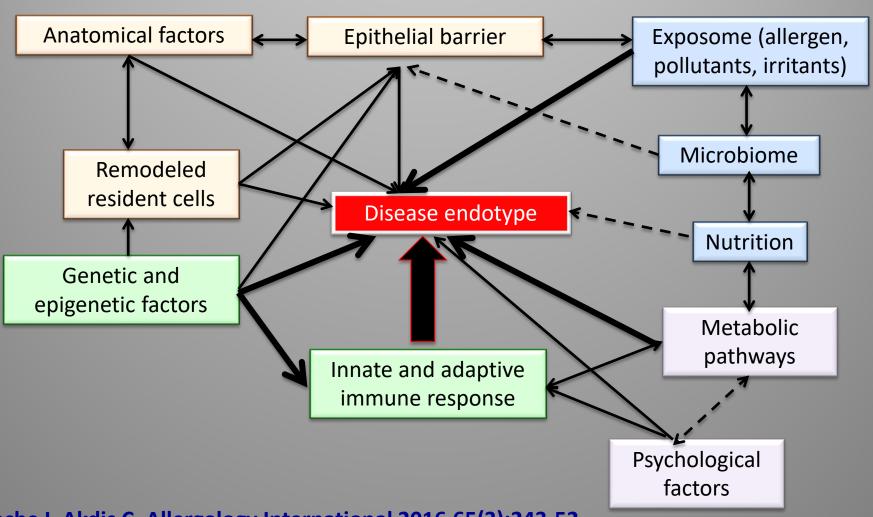
New concept - the dissociated effect





New concept - the complex endotype




Multiple type 2-driven molecular sub-endotypes

Multiple non-type 2-driven molecular sub-endotypes

Factors modulating the disease endotype



Agache I, Akdis C. Allergology International 2016,65(3):243-52

The value of a biomarker

Marker for the endotype

Guides treatment

Key mechanism for the endotype

Therapeutic target

Variable across age, asthma severity and in time

The ideal biomarker

Validity

- Reproducible (inter- and intra- coefficient of variability)
- Usable as diagnostic test (easily measurable, affordable)

Relevance

- Pathway specific
- Related to a relevant clinical end point (surrogate end points)

Current biomarkers in severe asthma

 The majority predict treatment response, very few forecast disease risk and progression

Suitable for research settings

Need to be validated and qualified

IL-5 (serum, saliva) (ref 27, 28, 29, 30,31,32,33,34, 35	1	•	•
IL-13 (serum, sputum) (ref 27, 36, 37,38)	•	•	•
IgE (serum) (ref 39, 40,41)	•	•	•
IL-4 (serum, sputum) (ref 38,42)	•	•	•
Periostin (serum, lung biopsies, BAL, tears) (ref 43,44,45)	•	•	✓
Type 2 gene expression (periostin, serpin B2, CLCA-1) in bronchial biopsies/sputum cells (ref 19,22,46)	•	•	-
DPP-4 (serum) (ref 47)	•	-	•
Eotaxin, RANTES, GM-CSF (serum, saliva) (ref 48,49)	*	•	-
IL-9 (serum) (ref 50)	•	•	?
IL-25 (bronchial epithelium, serum) (ref 51,52)	1	•	?
TSLP; CRTH2 and DP1 receptors (ref 52,53,54,55,56,57)	•	•	Under investigation
CCR8; TARC; IL-31; IL-32 and T1/ST-2; IL-19; NKT cells (ref 58, 59,60)	*	*	-
IL-33, proangiogenic BM precursors, osteopontin, galectin 9 (ref 61,62,63)	*	•	•
CD48, leptin, lactoferin, IL-23 (ref 64,65,66)	*	-	-
IL-7 (serum, PBMCs) (ref 67)	•	•	-
ICOS/ICOS-L; IL-22; H4 receptors (ref $68,69,70$)	*	-	-
II-5 and IL-13 producing Innate lymphoid cells in serum and sputum (ref 71)	•	•	-
DNA methylation profile (ref 72)		•	

Type 2 asthma biomarkers

Agache I, Rogozea L. In press

Validation and qualification of biomarkers

 Validation is the process of assessing the measurement performance of the biomarker (reproducible and accurate data)

•Qualification is the evidentiary process of linking a biomarker with biological processes and clinical end points

Serum IL-17 as a biomarker for severe asthma										
	¹²⁰ 7									
		Beta	Standard Error of Beta	В	Standard Error of B	t(73)	p-level			
Smoke		0.010273	0.092371	0.010370	0.093245	0.11121	0.911746			

0.104863 -0.002714

(zo palients)

0.097467

0.098527

0.097938

0.093798

0.092198

0.091920

0.345615

-0.075581

-0.041392

-0.093847

0.609701

0.442894

0.097099

0.097593

0.106457

0.143129

0.092722

0.140359

0.115406

(so palients)

3.55940

-0.77445

-0.02549

-0.28919

-1.01213

4.34388

3.83770

0.000649

0.441099

0.979728

0.773233

0.314731

0.000043

0.000257

NSAID intolerance

Moderate/severe

persistent rhinitis/

Blood eosinophilia

IL-17 > 20 pg/ml

FEV1 < 50%

predicted

chronic rhinosinusitis

Atopy

Obesity

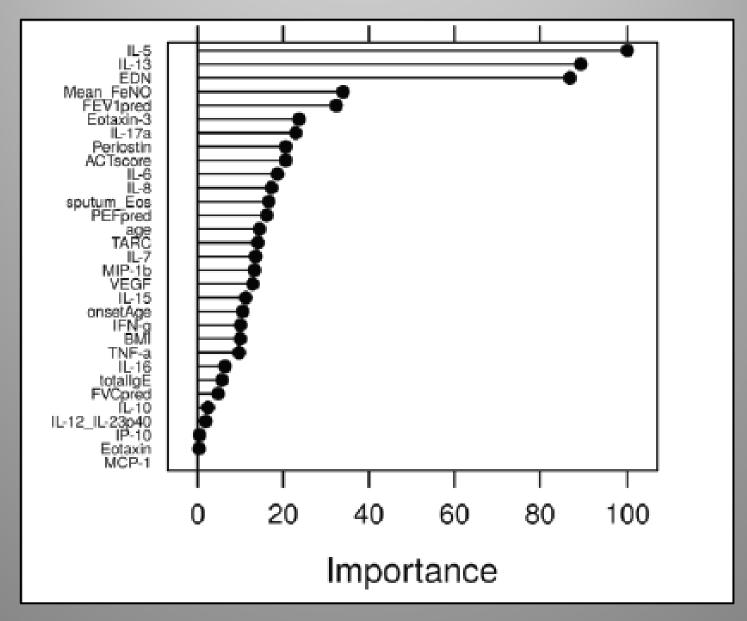
0.346923

-0.076304

-0.002673

-0.028323

-0.094935


0.400498

0.352762

Agache I et al. Respir Med 2010;104:1131-7

(23 patients)

Biomarkers for eosinophilic asthma

Endot	ype	drive	n treat	tment	in t	ype i	2	asthma
redictive								

Target

IgE

IL-5

IL-5

IL-5Rα

IL-4Rα

IL-13

IL-13

Drug

Omalizumab

Mepolizumab

Reslizumab

Benralizumab

Dupilumab

Tralokinumab

Lebrikizumab

Muraro A, et al. J Allergy Clin Immunol. 2016;137(5):1347-58

biomarker

Blood eos

Periostin

FeNO

Blood/sputum eos

FeNO

Blood eos

Blood eos

Blood eos

Periostin

DPP-4

Periostin

Endot	ype	driven	treat	ment i	n typ	z 2	asthma

Effects

Reduces exacerbations

Improves symptoms

and quality of life

Reduces eos,

exacerbations and OCS

Reduces eos,

exacerbations

Improves FEV₁

Reduces eos and bas,

exacerbations

Improves FEV₁

Reduces exacerbations,

Improves FEV₁

Reduces eos

Improves FEV₁

Reduces exacerbations

Improves FEV₁

Regulatory status

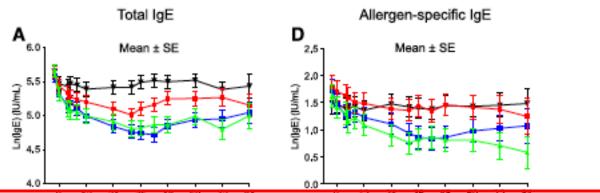
FDA- and EMA-approved

FDA and EMA approved

FDA and EMA approved

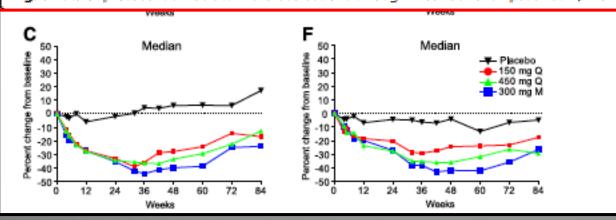
Phase III

Phase III


Phase II

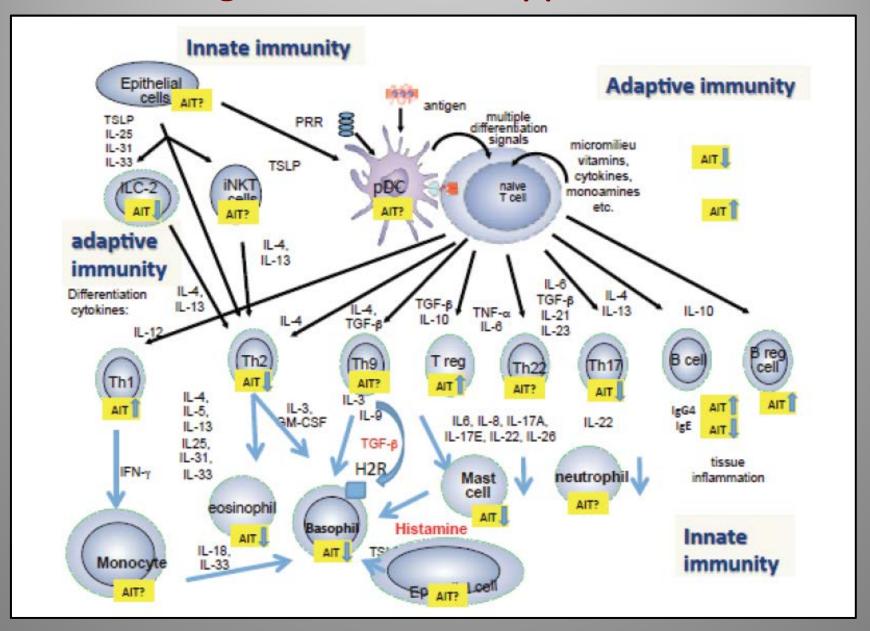
Phase III

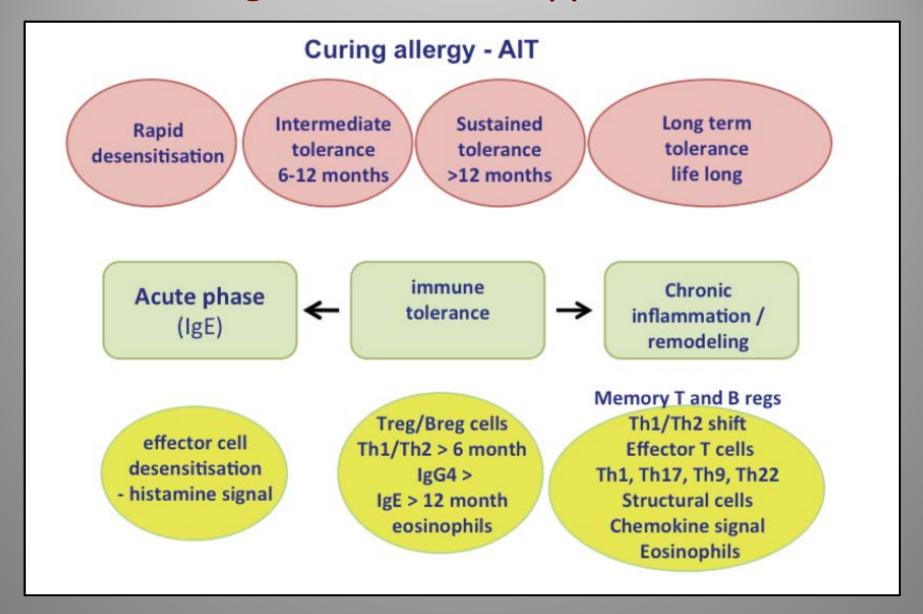
Endoty	pe o	driven	treatme	ent in	type	2	asthma


Endotype	driven	treatment	in	type	2	asthma
----------	--------	-----------	----	------	---	--------

Endotype driven treatment in type 2 ast	ihma
---	------

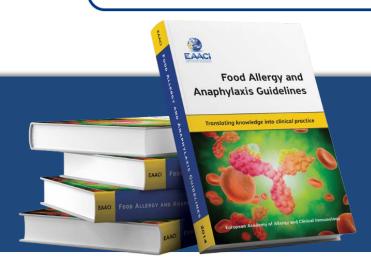
Treatment	n	Number of Exacerbations	Exacerbation Rate	Rate Reduction (%)	90% CI			ite Red		n with 9 Quilizu		
	145	60	0.62						I			
150 mg Q	145	63	0.66	-5.7	-54.7 to 27.8				•			
450 mg Q	145	63	0.69	-11.2	-62.7 to 24			-	-			
300 mg M	143	47	0.5	19.6	-21.3 to 46.8					•		
						60	-40	-20	0	20	40	60

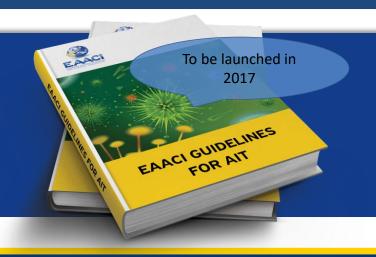

Fig. 3 Rate of protocol-defined asthma exacerbations through Week 36 for all patients. M, monthly, Q, quarterly


Harris JM, et al. Respir Res. 2016;17:29

Allergen immunotherapy in asthma

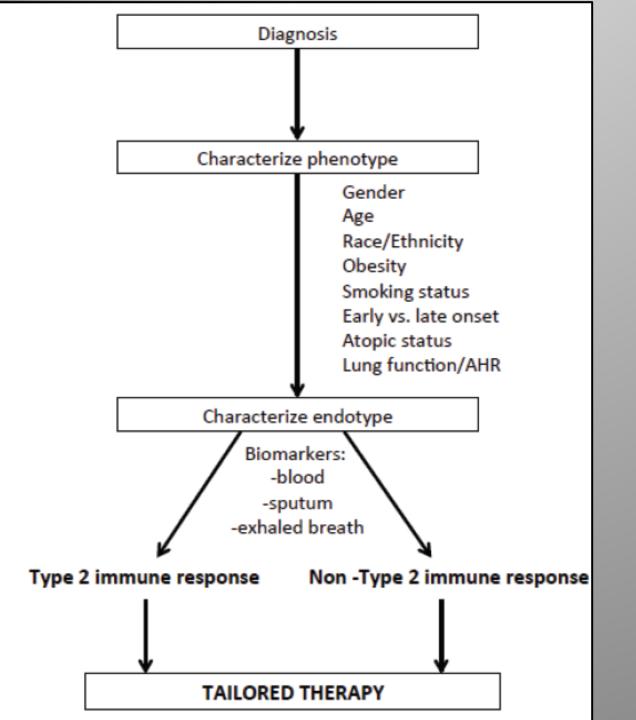
Allergen immunotherapy in asthma


Allergen immunotherapy in asthma


Primary outcomes	1. Effectiveness	Short term (during treatment) Symptom score						
		Long term (at least one year after	Medication score					
		discontinuation of treatment)	Symptom and medication score					
	2. Cost-effectiveness							
	3. Safety							
Secondary outcomes	1. Asthma control							
	2. Asthma specific quality of life							
	3. Exacerbations							
	4. Lung function							
	5. Response to environmental exposure chamber or bronchial allergen challenge							
	6. Safety as assessed by local and systemic reactions							
	7. Health economic analysis from the perspective of the health system/payer							

Dhami S et al. Clin Transl Allergy. 2016;6:5.

Guidelines



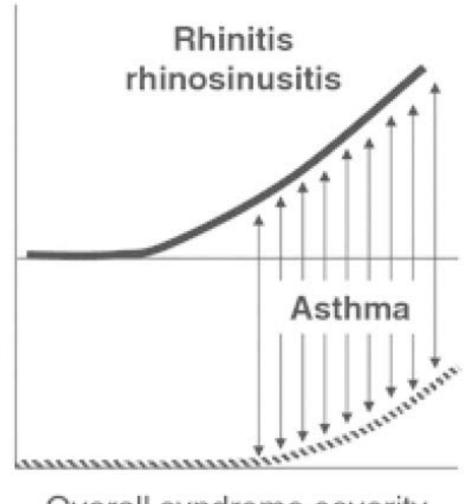
EAACI Molecular Allergology User's Guide

Straightforward guide on molecular allergology describing what are components, the clinical benefits of testing for components as well as how to interpret results including understanding cross-reactions

Available on www.eaaci.org

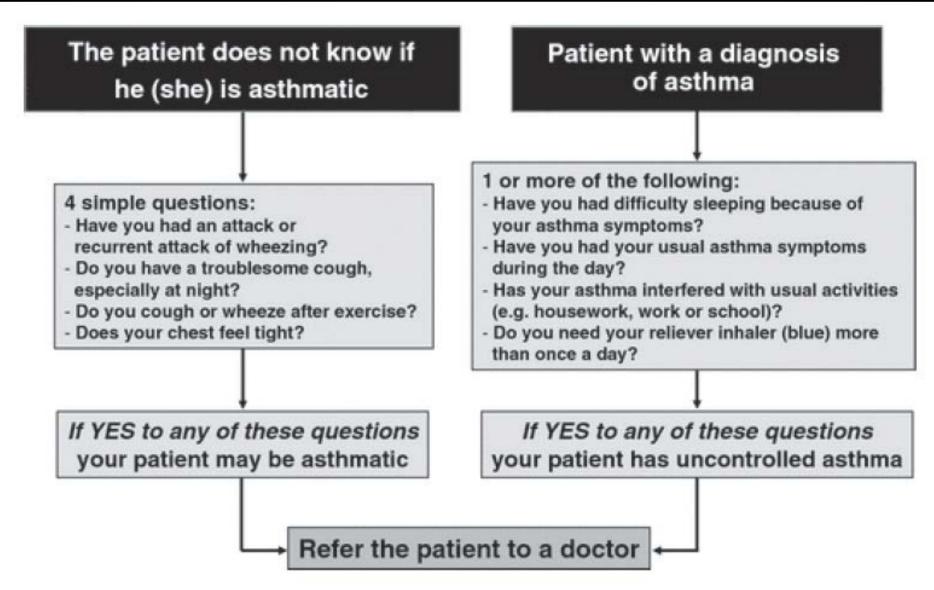
Precision medicine in asthma

Muraro A, et al. J Allergy Clin Immunol. 2016;137(5):1 347-58

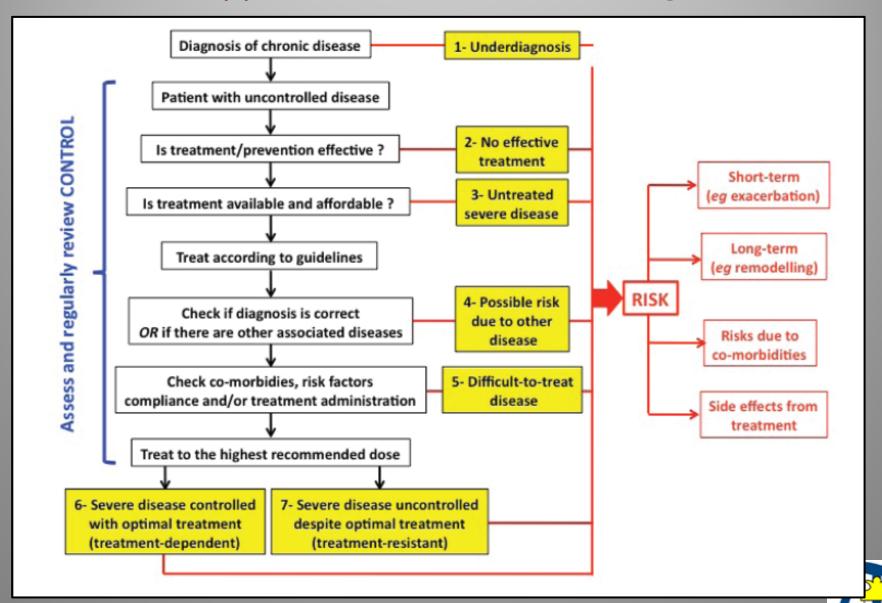

1b. Main research area - asthma comorbidities

One airways disease concept - ARIA

Upper airway disease severity


> Lower airway disease severity

Overall syndrome severity



One airways disease concept - ARIA

Uniform approach for severe allergic diseases

Asthma and obesity

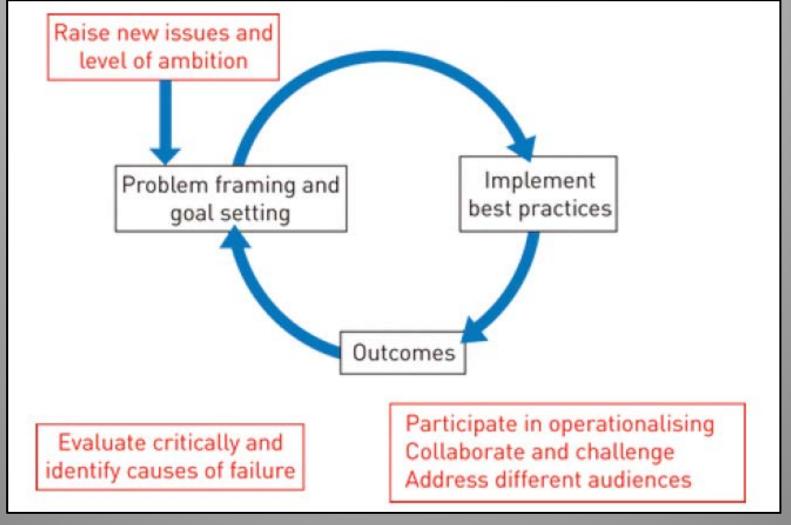
	Obe	se	Non-o	bese		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
1.1.1 Obese adults								
Camargo et al, 1999	398	1596	1198	11203	13.3%	2.77 [2.44, 3.15]	1999	
Beckett et al, 2001	20	906	64	3626	7.7%	1.26 [0.76, 2.09]	2001	-
Chen et al, 2002	39	1821	133	8920	9.9%	1.45 [1.01, 2.07]	2002	-
Huovinen et al, 2003	9	164	77	4285	5.4%	3.17 [1.56, 6.45]	2003	
Romieu et al, 2003	43	4848	325	61561	10.6%	1.69 [1.23, 2.32]	2003	
Nystad et al, 2004	202	4442	4016	130963	13.2%	1.51 [1.30, 1.74]	2004	*
Ford et al, 2004	70	1582	247	7874	11.4%	1.43 [1.09, 1.87]	2004	-
Gunnbjornsdottir, 2004	82	1393	539	14581	11.9%	1.63 [1.28, 2.07]	2004	
Coogan et al, 2009 Subtotal (95% CI)	517	13206 29958	552	33229 276242	13.4% 96.8%	2.41 [2.14, 2.72] 1.82 [1.47, 2.25]	2009	•
Total events	1380		7151					16.55
Heterogeneity: Tau ² = 0.0	8; Chi* =	66.13, dt	= 8 (P	0.00001); P = 889	6		
Test for overall effect Z =								
1.1.2 Obese children								
Castro-Rodriguez 2001 Subtotal (95% CI)	5	50 50	21	396 396	3.2% 3.2%	1.98 [0.71, 5.52] 1.98 [0.71, 5.52]	2001	
Total events	5		21					1
Heterogeneity: Not applic	able							
Test for overall effect Z =	1.31 (P	0.19)						
Total (95% CI)		30008		276638	100.0%	1.82 [1.48, 2.25]		•
Total events	1385		7172					
Heterogeneity: Tau* = 0.0	08; Chi* =	66.13, d	f = 9 (P 4	0.00001); P = 869	6	\rightarrow	
Test for overall effect Z =							0.0	5 0.2 1 5

1c. Asthma management plans and new models of care

New generation guidelines

New generation guidelines

ARIA (allergic rhinitis and its impact on asthma) – 2008, 2010, 2016


EAACI Food Allergy and Anaphylaxis Guidelines 2014

EAACI Allergen Immunotherapy Guidelines 2017

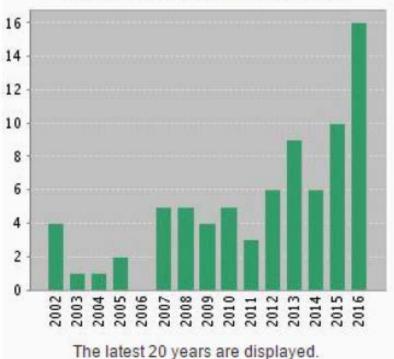
EAACI – AAAAI- ERS Asthma Guidelines 2019

New models of care - integrated care pathways

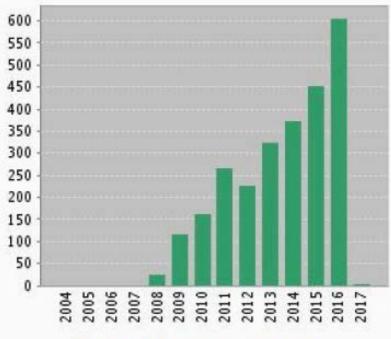
European Innovation Partnership on Active and Healthy Ageing, Action Plan B3; Mechanisms of the Development of Allergy, WP 10; Global Alliance against Chronic Respiratory Diseases,.

Eur Respir J. 2014;44(2):304-23

Asthma "best-buys" management plan



2. Evolution and development plans for career development



Published Items in Each Year

The latest 20 years are displayed.

Citations in Each Year

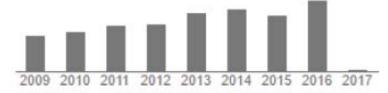
The latest 20 years are displayed.

Results found: 77

Sum of the Times Cited [?]: 2567

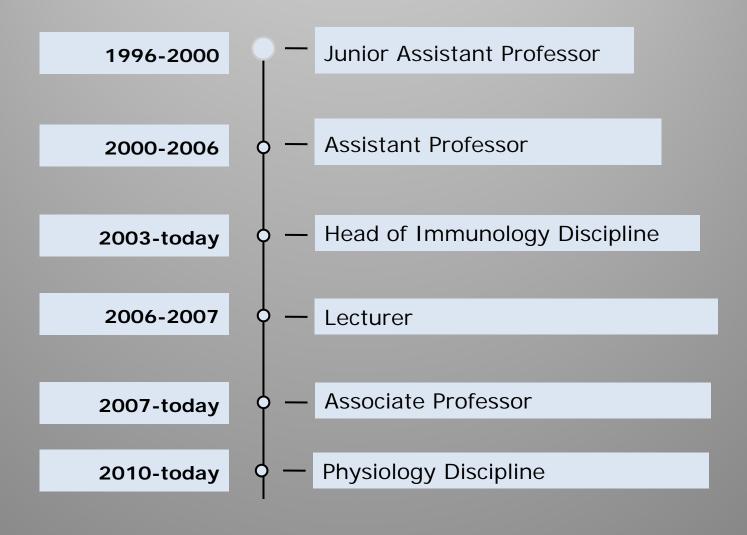
Sum of Times Cited without self-citations [?]: 2500

Citing Articles [?]: 2296


Citing Articles without self-citations [?]: 2265

Average Citations per Item [?]: 33.34

h-index [?]: 18


Google Scholar

Citation indices	All	Since 2012
Citations	8590	4644
h-index	20	20
i10-index	32	32

Academic development

Key achievements

Interactive teaching and creative scientific research

- New curriculum for immunology, physiology for MD and allied health – undergraduate and master programmes
- Practical reference guides for students: immunology and pneumology

Scientific development future plans

Asthma endotypes

■PN-II-RUTE-2014-4-2303 project, Endotypes of Non-Eosinophilic Asthma (ENDANA)

Type 2 asthma subendotypes

Pediatric asthma endotypes

•The role of exposome in asthma – consensus document EAACI-AAAAI

Precision medicine

 Biomarkers and endotypes for allergen immunotherapy – in collaboration with Swiss Institute for Allergy and Asthma Research (SIAF)

•Mobile health/Allergy 2.0 and 3.0

 Development of protocols for educational intervention in the community for asthma management – in collaboration with Pharmaceutical Group of the EU

Professional development future plans

2017-2019: President of the European Academy of Allergy and Clinical Immunology

- facilitate the cooperation between international and national societies as a scaffold for
- 1. local adaptation and implementation
 - guidelines
 - cutting-edge research
 - best practices
 - efficient health policies
- 2. advocacy for promoting asthma as a major health problem.

Academic activity future plans

New educational portfolio for students and HCPs - purposeful education

Facilitate both professional and career development

Key concepts: work-experience and social service

New tools facilitating interactive learning

- tutorials for the faculty master programmes and for the doctoral school,
- multidisciplinary learner programmes,
- interactive brainstorming, buzz-sessions, Think-Pair share, incident process

Building the community feeling for students and teachers

Increased engagement in shaping the academic landscape and the organizational culture

Close working relationship between the student and faculty research mentor

Support for early career researches through national and international cooperative projects.

PhD coordination and full professorship

